
VizSchema: metadata for
visualization

Presenter: J.R. Cary†*
†Tech-X Corporation; *University of Colorado

Thanks to the VizSchema Team: T. Austin, A. Hakim,
J. R. Cary, S. Veitzer, A. Pletzer, D.N. Smithe, M.

Miah, P. Stoltz, S. Shasharina, P. Hamill, S. Kruger,
D. Alexanda, P. Messmer
December 4, 2008

• Why
• How (attribute definitions)
• Details
• What (codes that have adopted)

2

VizSchema: getting your data into advanced
(parallel) viz tools

• With the production of large amounts of data through
parallel computation, we need to move to parallel
visualization tools
– Handle files that do not fit into memory
– Process data in reasonable time

• Modern tools allow incorporation of plugins to read data
– VisIt, ParaView
– Develop C++ class that overrides base-class (virtual) methods for

• Mesh and data registration
• Return (by pointer) the mesh and data

• The rub: plugins must be able to interpret the data
– What are the meshes (rectilinear, structured, unstructured) and

their parts?
– What datasets are there, on what meshes are they defined, and

what type (nodal, zonal) are they?

Visualization Schema: provide the attributes to permit visualization

3

VizSchema expanding to include provenance

•Who generated the data?
•When was it generated?
•With what version of the software?

Provenance Schema: attributes to reproduce the data

4

VixSchema data semantics

•Variable names, descriptors

Data semantics: attributes to interpret the data

5

Principles of VizSchema

•Should not interfere with other schema
•Should be able to work for the many
common types of data

•Should be appendable

6

The visualization community has classified
mesh and data types

• (VTK becoming defacto standard)
•Meshes

–Structured: uniform, rectilinear, irregular
–Unstructured: points and cells
–We provide some coordinate system

generalizations
•Data lives on those meshes, some number
of values per point (nodal) or cell (centered)
–(okay, face and edge too…)

Our task it to add the corresponding
descriptions to the data

7

Self-describing data formats provide the
means to attach metadata

• Binary data, so small
• Tags tell type (float/double/int) and shape
(dimensions)

• Can attach attributes to data to describe
– What is represents (mesh, data)
– Correspondents (mesh of data)
– Units, preferred names, …

• Two main formats
– NetCDF: limited to flat collection of arrays (?, now

being generalized? New version depends on hdf5.)
– HDF5

• Fully hierarchical (better for complex component models)
• Standard for parallel I/O

8

VizSchema defines the tags needed for
interpretation of data

xena.cary$ h5ls -lr core-edge-exemplar_core_5.h5
/ Group
/density Dataset {151, 33}
/mappedGrid Group
/mappedGrid/points Dataset {151, 33, 2}
/temperature_H2p1 Dataset {151, 33}
/temperature_electron Dataset {151, 33}

xena.cary$ h5dump -A -d /density core-edge-exemplar_core_5.h5
HDF5 "core-edge-exemplar_core_5.h5" {
DATASET "/density" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (151, 33) / (151, 33) }
 ...
 ATTRIBUTE "vsMesh" {
 (0): "mappedGrid"
 }
 ATTRIBUTE "vsType" {
 (0): "variable"
 }
}
}

9

VizSchema allows definition of mesh type and
data

xena.cary$ h5dump -A -g /mappedGrid core-edge-exemplar_core_5.h5
HDF5 "core-edge-exemplar_core_5.h5" {
GROUP "/mappedGrid" {
 ...
 ATTRIBUTE "vsKind" {
 (0): "structured"
 }
 ATTRIBUTE "vsType" {
 (0): "mesh"
 }
 DATASET "points" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (151, 33, 2) / (151, 33, 2) }
 ...
 }
}
}

Work in progress as we define more and newer types,
account for more variation (e.g., Fortran data put out with C
interface) See: https://ice.txcorp.com/trac/vizschema

Dimensionality

10

Companion descriptor file complicates for
complex component models

•XDMF reader is a great idea
–Define XML file that defines the meshes and

data inside an HDF5 file for plotting
but
•For FACETS, every output file can have a
different structure, potentially with different
names, so one XML file per data file?

•VizSchema keeps data with its metadata so
that interpretability is not lost

11

Metadata can be attached a posteriori

• Open file using pytables
• Open a dataset
• Attach attributes (one line of code per attribute)
• Close file

h5file = tables.openFile(fileName, mode='a')
dataSet = h5file.getNode("/" + dataSetName)
dataSet.attrs.vsType = "variable"
h5file.close()

Namespacing with vs to avoid clashes

12

VizSchema plugin for VisIt provides reference
implementation, but more to do

• Reads data and meshes for uniform
cartesian, structured, unstructured
polygons

• More to go: tets, hexahedra, rectilinear
grids, …

• Parallelism ("MDST")
• Multiblock ("MDST") for data correlation
• Time sequences of data ("MDMT")
• Retrofit to NetCDF?
• We welcome involvement: defining names,
generalizing schema

13

VizSchema now in use by multiple
computational applications

• VORPAL (OASCR
winner, 2008)

• NIMROD
• FACETS
• UEDGE
• MODAVE (Climate)
• PolySwift
• Will be working with
COMPASS SciDAC to
bring capability to
other codes

• Will be working with
other fusion codes

