
VizSchema - Visualization Interface for Scientific

Data

Svetlana Shasharina, John Cary,

Seth Veitzer, Paul Hamill,

Scott Kruger, Marc Durant, David Alexander

Tech-X Corporation

Boulder, CO

Work funded by US DOE and Tech-X

CVG09, Algarve, Portugal

Tech-X is small-business company

www.txcorp.com

• Funded in 1994, Boulder, Colorado, USA
• 60 employees (physicists, mathematicians, computer

scientists and developers)
• DOE, DOD, NASA funding and commercial revenue
• Applications

– Accelerator physics
– Fusion modeling
– Nanotechnology

• Computer science
– Grids
– Data Distribution Service
– CORBA
– Multicore computing
– Semantic Web
– Visualization

CVG09, Algarve, Portugal

Boulder is different from Algarve :-)

CVG09, Algarve, Portugal

Outline

• Motivation

• VizSchema principles and some details

• Examples of visualization

• Conclusions and future directions

CVG09, Algarve, Portugal

Scientific data and visualization tools

are heterogeneous

• Multiple data formats are in use (HDF5, NetCDF,
MDSPlus, custom formats)

• Multiple viz tools are in use (VisIt, VTK, IDL, AVS/Express
etc)

• Settling on one format (HDF5) is not enough:
– HDF5 consists of groups and datasets adorned by attributes

(metadata), hierarchical
– One can organize them in any order and not use metadata at

all
– One cannot know what each dataset and group means and

how to interpret data
• What is supposed to be visualized?
• How to match data to its mesh?
• How one interprets N-dimensional cube of data?
• How does a viz tool get what it wants (data ordered as 1d arrays,

C-ordering, hints how to build a mesh…)?

• Need metadata to teach viz tools to recognize and build
what they need

CVG09, Algarve, Portugal

External and internal metadata have

their uses

• Some application have outputs with the same structure
– External metadata can be used as only one description file per

an application (find mesh in dataset /foo/blah, for example)

– An XML is a natural choice for mapping real data to visualization
concepts

– But
• it is an extra dependency on XML tools

• Some application teams do not “like” XML :-(

• Some application changes the structure of outputs
depending on simulation
– Cannot count on one XML instance, so we do not count on XML

file at all-> One needs to have correct metadata in data itself

– This was our choice as we worked with such capricious
applications

CVG09, Algarve, Portugal

Vizschema’s path

• Define what is needed for visualization (full at
any moment and minimal)

• Started with XML but it barfed (no static
descriptions and no acceptance from our
application scientists)

• Switched to defining HDF5 markup as metadata

• Create viz-tool-agnostic but format specific data
readers (get metadata and data needed for viz).
We did C++ HDF5 reader.

• Implement modules in viz tools using the
readers API. We did VisIt plugin.

CVG09, Algarve, Portugal

VizSchema offers flexibility and

extensibility

CVG09, Algarve, Portugal

Standardization is hard to impose, but

works in collaborative projects

• SciDAC - Scientific Discovery through Advanced
Computing

– DOE program (about 10 years old)

– Mixes multiple physics, applied math and computer scientists
groups in each domain-specific project

– Each project is 5 years old and has ~$2M/year funding

• Such scope allows and imposes standardization

• Examples:

– FACETS (Framework Application for Core Edge Transport
Simulations)

– COMPASS (accelerator physics)

– VACET (Visualization and Analysis CET: VisIt tool)

– Tech-X is involved in FACETS and COMPASS and produce
VizSchema

CVG09, Algarve, Portugal

VizSchema Principles

• User can name all datasets and groups arbitrarily

• Minimal markup

• Use of only attributes for VS markup

– All such attributes start with Vs

– If an attribute refers to a named node, one can use a short of
fully qualified name (path from the top)

• The entity in the closest node will be used

• Attributes can be created

– at I/O (using C or Fortran HDF5 API) or

– added after the file was created
• PyTables are very nice:
h5file = tables.openFile(fileName, mode='a')

dataSet = h5file.getNode("/" + dataSetName)

dataSet.attrs.vsType = "variable"

h5file.close()

CVG09, Algarve, Portugal

VS data classification

• “Variable”: data to be visualized and using mesh defined
external:

– One needs to have an attribute to point to the used mesh

– Electric and magnetic fields in PIC simulations

• “VariableWithMesh”: data mixes the data to be visualized
with the spatial information mixed in

– Particles (x, y, z, p_x, p_y, p_z) or (x, p_x, y, p_y, z_pz)

– One need attributes to help extract mesh from this mix

• “Mesh”: spatial information

– Needs attributes helping to build all points from whatever is
given

• By default, all data is single domain (SD)

• Can be multiple domains (MD) but needs more metadata
to stitch all together

CVG09, Algarve, Portugal

Variables live on meshes externally

defined

• Variables live in datasets:
Dataset ”E" {

 Att vsType = "variable”

 Att vsMesh = "mycartgrid

 DATASPACE (n0, n2, n3, 3)

 Att vsCentering = ”zonal” //nodal is default

}//3-component var on 3d mesh, E_0, E_1 and E_3 defined

• One can also specify ordering using
vsIndexOrder attribute:
“compMinorC“ [ix][iy][iz][ic] - default

“compMinorF” [iz][iy][ix][ic]

“compMajorC” [ic][ix][iy][iz] – not supported yet

“compMajorF” [ic][iz][iy][ix] – not supported yet

Component minor the component index appears last;

C – the first index is slowest

CVG09, Algarve, Portugal

Meshes metadata depend on meshes

kind

Group "mycartgrid" {

 Att vsType = "mesh”

 Att vsKind = "uniform”

 Att vsStartCell = [0, 0, 0]

 Att vsNumCells = [200, 200, 104]

 Att vsLowerBounds = [-2.5, -2.5, -1.3]

 Att vsUpperBounds = [2.5, 2.5, 1.3]

}

Dataset "mesh3dstruct" {

 Att vsType = "mesh”

 Att vsKind = "structured”

 DATASPACE (n0,n1,n2,3)

}

CVG09, Algarve, Portugal

Variables with mesh contain their

coordinates: two ways to go

Dataset ”vpelectrons" {

 Att vsType = "variableWithMesh”

 Att vsNumSpatialDims = 3

}

Dataset “synelectrons” {

Att vsType = “variableWithMesh
Att vsSpatialIndeces = “0,2,4”

} // Not implemented yet

CVG09, Algarve, Portugal

One can create derived variables

• If prime variable E with 3 components is defined
somewhere, one can define new scalars
Group anygroupname {

 Att vsType = "variableDefinition”

 Att vsDefinition = "elecEnergyDensity = 0.5*8.854e-12*(E_0*E_0
+ E_1*E_1 + E_2*E_2)”

}

• If prime variable e (var with mesh) is defined
somewhere
Group anyname {

Att vsType = “variableDefinition”

Att vsDefinition = “velocity” = {e_3, e_4, e_5}

}

• One can pass a string using VisIt expressions
rules

CVG09, Algarve, Portugal

One can have variables defined on

multiple domains
Dataset "privMesh" {

 Att vsType = "mesh”

 Att vsKind = "structured”

 Att vsMD = "edgeMesh”

}

Dataset "solMesh" {

 Att vsType = "mesh”

 Att vsKind = "structured”

 Att vsMD = "edgeMesh”

}

Dataset "psiPriv" {

 Att vsType = "variable”

 Att vsMesh = "privMesh”

 Att vsMD = "psi”

}

Dataset "psiSol" {

 Att vsType = "variable”

 Att vsMesh = "solMesh”

 Att vsMD = "psi”

}

CVG09, Algarve, Portugal

VizSchema is used in many codes

• NIMROD

• FACETS

• UEDGE

• VORPAL

• MODAVE

• PolySwift++

CVG09, Algarve, Portugal

NIMROD

CVG09, Algarve, Portugal

VORPAL

CVG09, Algarve, Portugal

Core and edge data can be visualized in

one viz (FACETS)

CVG09, Algarve, Portugal

VORPAL Fields

CVG09, Algarve, Portugal

VORPAL’s Particles

CVG09, Algarve, Portugal

MODAVE

CVG09, Algarve, Portugal

PolySwift++

CVG09, Algarve, Portugal

Conclusions

• Standardization is possible

–Common goals

–Value added

–Agreement to accommodate new requirements

–Centralized development was key, though

–Regression tests is a must (we diff png files)

• Standardization allowed combining data from
different applications in one viz (see movie)

• Development of tools of adding markup after files
were generated was very useful

–Some file are expensive to regenerate

CVG09, Algarve, Portugal

Future directions

• Parallelization of the VS VisIt plugin

• Extending to other formats

–NetCDF

–MDSplus

–More meshes and standardization of kinds and
attributes

• Subselection for very large data

CVG09, Algarve, Portugal

Pointers

• Wiki:

–https://ice.txcorp.com/trac/vizschema/wiki/WikiStart

• Dependencies:

–VisIt (1.11.2)

–HDF5 (1.8.2)

• Email questions and requests for the code to:
sveta@txcorp.com

