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Tech-X is small-business company

www.txcorp.com

• Funded in 1994, Boulder, Colorado, USA
• 60 employees (physicists, mathematicians, computer

scientists and developers)
• DOE, DOD, NASA funding and commercial revenue
• Applications

– Accelerator physics
– Fusion modeling
– Nanotechnology

• Computer science
– Grids
– Data Distribution Service
– CORBA
– Multicore computing
– Semantic Web
– Visualization
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Boulder is different from Algarve :-)
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Outline

• Motivation

• VizSchema principles and some details

• Examples of visualization

• Conclusions and future directions
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Scientific data and visualization tools

are heterogeneous

• Multiple data formats are in use (HDF5, NetCDF,
MDSPlus, custom formats)

• Multiple viz tools are in use (VisIt, VTK, IDL, AVS/Express
etc)

• Settling on one format (HDF5) is not enough:
– HDF5 consists of groups and datasets adorned by attributes

(metadata), hierarchical
– One can organize them in any order and not use metadata at

all
– One cannot know what each dataset and group means and

how to interpret data
• What is supposed to be visualized?
• How to match data to its mesh?
• How one interprets N-dimensional cube of data?
• How does a viz tool get what it wants (data ordered as 1d arrays,

C-ordering, hints how to build a mesh…)?

• Need metadata to teach viz tools to recognize and build
what they need
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External and internal metadata have

their uses

• Some application have outputs with the same structure
– External metadata can be used as only one description file per

an application (find mesh in dataset /foo/blah, for example)

– An XML is a natural choice for mapping real data to visualization
concepts

– But
• it is an extra dependency on XML tools

• Some application teams do not “like” XML :-(

• Some application changes the structure of outputs
depending on simulation
– Cannot count on one XML instance, so we do not count on XML

file at all-> One needs to have correct metadata in data itself

– This was our choice as we worked with such capricious
applications
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Vizschema’s path

• Define what is needed for visualization (full at
any moment and minimal)

• Started with XML but it barfed (no static
descriptions and no acceptance from our
application scientists)

• Switched to defining HDF5 markup as metadata

• Create viz-tool-agnostic but format specific data
readers (get metadata and data needed for viz).
We did C++ HDF5 reader.

• Implement modules in viz tools using the
readers API.  We did VisIt plugin.
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VizSchema offers flexibility and

extensibility



CVG09, Algarve, Portugal

Standardization is hard to impose, but

works in collaborative projects

• SciDAC - Scientific Discovery through Advanced
Computing

– DOE program  (about 10 years old)

– Mixes multiple physics, applied math and computer scientists
groups in each domain-specific project

– Each project is 5 years old and has ~$2M/year funding

• Such scope allows and imposes standardization

• Examples:

– FACETS (Framework Application for Core Edge Transport
Simulations)

– COMPASS (accelerator physics)

– VACET (Visualization and Analysis CET: VisIt tool)

– Tech-X is involved in FACETS and COMPASS and produce
VizSchema
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VizSchema Principles

• User can name all datasets and groups arbitrarily

• Minimal markup

• Use of only attributes for VS markup

– All such attributes start with Vs

– If an attribute refers to a named node, one can use a short of
fully qualified name (path from the top)

• The entity in the closest node will be used

• Attributes can be created

– at I/O (using C or Fortran HDF5 API) or

– added after the file was created
• PyTables are very nice:
h5file = tables.openFile(fileName, mode='a')

dataSet = h5file.getNode("/" + dataSetName)

dataSet.attrs.vsType = "variable"

h5file.close()
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VS data classification

• “Variable”: data to be visualized and using mesh defined
external:

– One needs to have an attribute to point to the used mesh

– Electric and magnetic fields in PIC simulations

• “VariableWithMesh”: data mixes the data to be visualized
with the spatial information mixed in

– Particles (x, y, z, p_x, p_y, p_z) or (x, p_x, y, p_y, z_pz)

– One need attributes to help extract mesh from this mix

• “Mesh”: spatial information

– Needs attributes helping to build all points from whatever is
given

• By default, all data is single domain (SD)

• Can be multiple domains (MD) but needs more metadata
to stitch all together
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Variables live on meshes externally

defined

• Variables live in datasets:
Dataset ”E" {

      Att vsType = "variable”

      Att vsMesh = "mycartgrid

      DATASPACE (n0, n2, n3, 3)

      Att vsCentering = ”zonal” //nodal is default

}//3-component var on 3d mesh, E_0, E_1 and E_3 defined

•  One can also specify ordering using
vsIndexOrder attribute:
“compMinorC“ [ix][iy][iz][ic] - default

“compMinorF” [iz][iy][ix][ic]

“compMajorC” [ic][ix][iy][iz] – not supported yet

“compMajorF” [ic][iz][iy][ix] – not supported yet

Component minor the component index appears last;

C – the first index is slowest
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Meshes metadata depend on meshes

kind

Group "mycartgrid" {

  Att vsType = "mesh”

  Att vsKind = "uniform”

  Att vsStartCell = [0, 0, 0]

  Att vsNumCells = [200, 200, 104]

  Att vsLowerBounds = [-2.5, -2.5, -1.3]

  Att vsUpperBounds = [2.5, 2.5, 1.3]

}

Dataset "mesh3dstruct" {

  Att vsType = "mesh”

  Att vsKind = "structured”

  DATASPACE (n0,n1,n2,3)

}
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Variables with mesh contain their

coordinates: two ways to go

Dataset ”vpelectrons" {

  Att vsType = "variableWithMesh”

  Att vsNumSpatialDims = 3

}

Dataset “synelectrons” {

Att vsType = “variableWithMesh
Att vsSpatialIndeces = “0,2,4”

} // Not implemented yet
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One can create derived variables

• If prime variable E with 3 components  is defined
somewhere, one can define new scalars
Group anygroupname {

 Att vsType = "variableDefinition”

 Att vsDefinition = "elecEnergyDensity = 0.5*8.854e-12*(E_0*E_0
+ E_1*E_1 + E_2*E_2)”

}

• If prime variable e (var with mesh) is defined
somewhere
Group anyname {

Att vsType = “variableDefinition”

Att vsDefinition = “velocity” = {e_3, e_4, e_5}

}

• One can pass a string using VisIt expressions
rules
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One can have variables defined on

multiple domains
Dataset "privMesh" {

  Att vsType = "mesh”

  Att vsKind = "structured”

  Att vsMD = "edgeMesh”

}

Dataset "solMesh" {

  Att vsType = "mesh”

  Att vsKind = "structured”

  Att vsMD = "edgeMesh”

}

Dataset "psiPriv" {

  Att vsType = "variable”

  Att vsMesh = "privMesh”

  Att vsMD = "psi”

}

Dataset "psiSol" {

  Att vsType = "variable”

  Att vsMesh = "solMesh”

  Att vsMD = "psi”

}
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VizSchema is used in many codes

• NIMROD

• FACETS

• UEDGE

• VORPAL

• MODAVE

• PolySwift++
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NIMROD
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VORPAL



CVG09, Algarve, Portugal

Core and edge data can be visualized in

one viz (FACETS)
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VORPAL Fields
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VORPAL’s Particles
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MODAVE
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PolySwift++
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Conclusions

• Standardization is possible

–Common goals

–Value added

–Agreement to accommodate new requirements

–Centralized development was key, though

–Regression tests is a must (we diff png files)

• Standardization allowed combining data from
different applications in one viz (see movie)

• Development of tools of adding markup after files
were generated was very useful

–Some file are expensive to regenerate
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Future directions

• Parallelization of the VS VisIt plugin

• Extending to other formats

–NetCDF

–MDSplus

–More meshes and standardization of kinds and
attributes

• Subselection for very large data



CVG09, Algarve, Portugal

Pointers

• Wiki:

–https://ice.txcorp.com/trac/vizschema/wiki/WikiStart

• Dependencies:

–VisIt (1.11.2)

–HDF5 (1.8.2)

• Email questions and requests for the code to:
sveta@txcorp.com


